
Droplet CFD
n Energent’s Variable Phase Turbine [1-2] (VPT) the fluid at the 
inlet is liquid, flashes inside the nozzle upstream of the turbine 

rotor, and is two-phase inside the rotor blade passage. A previous 
article [3] discussed calculating the trajectories of droplets inside 
the turbine rotor. 

In the converging section of the nozzle, the pressure decreases. 
When it declines to the saturation pressure, vapor bubbles form. 
At this pressure, the liquid is the continuous phase, the vapor 
the dispersed phase. With a continued decrease in pressure, 
eventually the liquid is the dispersed phase as droplets. The 
development of the dispersed phase, from the formation of vapor 
bubbles as the dispersed phase, the transition to liquid droplets 
being the dispersed phase, and the droplet breakup is not an easy 
task to model in computational fluid dynamics (CFD).

At first CFD is being used to investigate the flow field around 
droplets. An objective is to use the information gained from 
the calculations to develop a reduced order model that can be 
incorporated into traditional CFD codes and 1-D nozzle codes. 
Experimental work has been found for model problems to begin 
investigating computationally. By finding problems to study that 
have been investigated experimentally, the methodology used in 
the CFD simulations can be validated. 

A starting point is to examine the flow field around a single liquid 
droplet. An objective is to study the breakup of the droplet. In 
the meantime, the breakup of a 2-D water column subjected to 
a shock wave is investigated, for which there is experimental 
data from Tohoku University [4], Japan. By considering first the 
breakup of a 2-D liquid column instead of a 3-D spherical droplet, 
the computational cost is reduced.

Initially the calculations were done by solving the Euler equations. 
Although the physical viscosity is ignored, numerical viscosity is 
still present. Figure 1 is a series of snapshots of a liquid column 
breaking up, displayed as a Schlieren image of the density gradient.

The momentum interaction between the dispersed liquid phase 
and the continuous vapor phase is through the droplet drag, 
which is characterized by the drag coefficient. During the droplet 
breakup a question to answer is how to model the drag.
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The liquid cylinder’s center of mass was obtained from the 
CFD results during the time interval while there is no mass flux 
through the boundaries. Its position, velocity and acceleration were 
calculated. Plotted in Figure 2 are drag coefficients for the incident 
planar shock with Mach numbers of 1.3, 1.5 and 1.7. The initial 
column diameter is used to non-dimensionalize the drag coefficient.

Figure 2 Drag coefficient non-dimensionalized using the initial column 
diameter, for several different incident Mach numbers.

From the calculation, the frontal diameter of the deforming 
cylinder was obtained as a function of time for different values of 
the liquid volume fraction threshold, Figure 3.

Figure 3 Frontal diameter of the deforming cylinder for two different 
threshold values of the liquid volume fraction, for several different 
incident Mach numbers.

 

 

 

  

Figure 1 Schlieren images of a shock wave impinging on a liquid
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Figure 7 shows the reflected and transmitted shock waves, as 
well as the unsteady flow conditions both inside and behind the 
cylinder cloud.

Figure 7 Flow variables of the 2-D calculation at t=3.5.

A one-dimensional model is derived from the volume-averaged 
Navier-Stokes equations, where the viscous stresses within the 
continuous phase are assumed to be negligible, but the momentum 
coupling terms are still considered. The 1-D model equations that 
were solved do not include the unclosed fluctuation terms created 
during the volume-averaging procedure, such as the Reynolds 
stress. This is a reasonable assumption in dilute multiphase flows. 
However, in dense flows this assumption may not be appropriate.

The miscellaneous particle forces are assumed to be included in the 
drag coefficient for the quasi-steady drag force on a single particle
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where Ap is the particle cross-section, CD is the drag coefficient, 
and u and v are the continuous and dispersed phase velocities, 
respectively. For the time period considered the particle is fixed in 
space, so vi = 0. For the 2-D particle, the cross-section area is its 
diameter, Dp. The drag coefficient CD was determined by finding 
the value that best matches the reflected and transmitted shock 
locations and magnitudes of the 2-D solution. 

Figure 8 - Figure 10 compare the solution of the 1-D model with 
a planar average of the 2-D result at the non-dimensionalized 
time of 3.5. The particle curtain is located between -0.5 < x < 
0.5. For the plots of density and velocity, the 2-D results appear 
to oscillate around the 1-D model results for a significant portion 
of the solution. For these profiles, two additional cases are shown 
where the drag coefficient is increased and decreased by 30%. 
Small, yet noticeable, differences can be observed in the shock 
locations. This suggests that the methodology used is adequate to 
evaluate an overall mean drag coefficient.

continued on page 8
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Figure 4 Drag coefficient non-dimensionalized using the deforming 
column frontal diameter, for a threshold value of 0.95 of the liquid 
volume fraction, for several different incident Mach numbers.

By using the actual column diameter instead of the initial diameter, 
the drag coefficient shows significantly less variation during the 
breakup period that is simulated, Figure 4.

In the application of interest, the droplet is not in isolation, but is 
part of a cloud. At Sandia National Laboratory [5], experiments 
have been conducted on a planar shock wave impacting a curtain 
of solid particles.

The simulation focuses on the early stage of the experiment 
when the particles have not yet moved and can be assumed to be 
fixed in space. The 3-D particle cloud is modeled by an array of 
staggered cylinders, Figure . With the stagger arrangement used, 
the open cross sectional area varies by less than 1.5%, Figure 6. 
The volume fraction is nearly constant through the curtain. For 
this 2-D model, the Euler equations are solved. The numerical 
method implicitly contains numerical viscosity.

Figure 5 Array of 
staggered cylinders.

Figure 6 Open 
cross sectional 

area of the cylinder 
array.



CRYOGENIC INDUSTRIES TO  
RELOCATE HEADQUARTERS
This Fall Cryogenic Industries will relocate its headquarters 
offices from Murrieta, CA to Temecula, CA.  The new facilities 
will house administrative, finance, treasury, legal, internal audit, 
regulatory compliance, human resources and tax functions.  An 
announcement with the new address and telephone numbers 
will be made at the time of the relocation.

Figure 8 Comparison of the density from the 1-D model and with 
the planar average of the 2-D model at t=3.5. In addition for the 1-D 
model, the drag coefficient was varied by +/- 30%.

Figure 9 Comparison of the velocity from the 1-D model with the planar 
average of the 2-D model at t=3.5. In addition for the 1-D model, the 
drag coefficient was varied by +/- 30%.

In Figure 10 the planar averaged pressure in the 2-D result is 
consistently lower than that predicted by the 1-D model inside 
the particle cloud and downstream of the trailing edge until x 1.5. 
This is attributed to the fluctuations associated with the vortical 
structures (see Figure 7), which is a behavior that the 1-D model, 
in its current form, is incapable of reproducing. Also shown is  the 
sum of the volume-averaged pressure pT = (p) + αc (ρ

The effective total Reynolds pressure better matches the 1-D 
model solution inside the cloud and unsteady region. The 1-D 
model overestimates the static pressure by including the energy 
that should be contained in turbulent kinetic energy. This flow is 
too dense to neglect the Reynolds stress terms.

Figure 10 Comparison of the pressure from the 1-D model with the 
planar average of the 2-D model at t=3.5, and with the Reynolds stress 
term included.

By examining how 2-D and eventually 3-D computations compare 
with experimental data, we would have more confidence in the 
reduced order model that we want to develop to describe the 3-D 
phenomena of flow around droplets.
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